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We show that the Cauchy problem for the NavierStokes and Euler’s equations has, on the 

whole, a onique solution in the case of axisymmetric flows of an incompressible fluid. We 

also show that, when viscosity disappears, then the solutions of NavierStokes equations 

tend to the solutions of Euler’s equations. In the general three-dimensional case, the un- 

ique solvability has only been proved for some isolated cases (for the viscous flows in [ 1 

and 2] and for the nonviscous flows in [3 and 411. Complete solutions exist however in the 

plane case for both problems f[S and 61 for viscous and 17 and g] for nonviscous flows). 

1. Statement of the problem and a priori estimates. Let us consider 

the Cauchy problem for the Navier-Stokes equations (problem A) and for the Euler’s equat- 

ions (problem R) in the case of au incompressible fluid filling the whole space R3 

$-vAv+(v,V)v=-VP+F(z,t), divv=O, v(s,O)=a(s) (1.1) 

~+(v,v)v=---vP+F(r,t), divv=O, v(z,O)=a(x) (1.2) 

where v = V(X, t) and P = P (x, t) are the velocity and pressure respectively, x = (zt, x2, 
x 

1 

1 denotes a point belonging to R3; t E [O, T] (where 0 < T is any number); F(r, t) and 

a xl are known vectors solenoidal in R3 and v is a positive constant. 

We shall call the vector V= (vr, u,g, u,) axisymmetric if vo= 0 with vr and vz are,inde- 

pendent of 0 and we shall call a function axisymmetric, if it is independent of 8 (r, 0 and 

z are cylindrical coordinates). 
We shall now introduce the following functional spaces: 

Hc(R3) and H,(RJ) are the complements of the set of all vectors, smooth, finite and 

solenoidal in RJ over the norms of the following scalar products: 

(ut, UZ)& = u&s, (ut, UZ)& = rot U1 rot uzds 

Ho TQ 1 and Ht’fQ,) are the complements of the set of all vectors smooth in Qr = 
= R3xT0, I’], finite and solenoidal in RJ over the norm of the following scalar prod- 

ucts: 
T T 

(Ul, UI)&, = hr ua),& s (a, * ua)&* = s @l* ua)f& dt 
0 0 

Ii, (R ‘1 and H3fR’ 1 are the complements of the set of all vectors smooth and axisym- 

metric in R3 and finite in the semi-plane passing through the xe-axis, over the follow- 

ing norms: 
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H2’fQT) and H3’(QT) are the complemsnts of the set of all vectors smooth in QT 
axisymmetric and solenoidal in R3 and finite on the semi-plane passing through the 

x3-axis, over the norms 

II u IfH/ = iii u IIH, d& llull,:~= {IIU llN$ 
0 0 

D e f i n i t i o n 1.1. The vector V(Z, C) f?E H l'(QTf shall be called the generalized 

solution of the problem (1.1) in the cylinder QT. This vector will have finite 

for some p (3 < p< 6) and will satisfy the following integral identity (O& I (V+t, V&, 

fl@) 

- 5 I 
+-Wf%OW+ [!j I- vcp, + vVvVq, + (v, V) vg, - Fq] c&r& = 0 (1.3) 

t 

for any vector 4(x, t) smooth in QT, finite and solenoidal in R3, for which (b(x, 2’) = 0. 

D e f i n i t i o n 1.2, The vector V(Z, c) E Hl’(QT) shall be called the gmeralized 
solution of the probiem (1.21 in the cylinder QT. This vector will have finite 

and will satisfy the following integral identity 
T 

- 

I 
a(4Ip(z,O)dz+S 5 I--q++(v, Vvcp-Wdzdt=O (1.4) 

* o R’ 

for any vector #(E, t) smooth in Q T and finite aud solenoid81 in R3, for which r$(x, T) = 0. 

Vectors a(z) and Ffz, t) are assumed such, that the corresponding integrals in (1.3) and 

(1.4) have a meaning, e.g. they can be generalized vector functions concentrated on some 
surfaces or curves. 

As usual, we verify that the classical solutions of (1.1) and (1.2) are generalized solu- 
tions in the sense of the above definitions wd conversely, that the generalized solutions 
with all continuous derivatives appearing in (1.11 and (1.2) are classical solutions of these 

problems. 
We shall now give a priori estimates for solutions of the problems A and B, which are 

supposed to be smooth, axiaymmetric and decaying sufficiently rapidly at infinity. As we 
know, the energy equation yields (axial symmetry need not be assumed here). 

L e m m a 1.1. The following estimate holds for solutions of the problems A and B 
t 

Vorticity equations of the problems A and B 

a,--vAw+(v, V)o-(o, V)v=f 

o*+(v,v)~--_(@, V)v=f (a=rotv, f=rotF) 
will yield further estimates. 

(1.6) 

(1.71 

In the axiaymmetric case, (1.6) and il.71 can be written as 
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end by virtue of axial symmetry we have 

0, = 0, = 0, me = w (r, 2, t); fr = f, = 0, ft~ = f (r, 2. t) 
Continuity equation iu this case has the form 

(1 .lO) 

L e m m a 1.2. The following sstimates bold for the axisymmetric solution of the prob= 
lem A(R) (1 < p): 

Proof. Multiplying (1.8) by 
0 P-l 

I I 
- 
r 

sign + 

end integrating over the semi-plane E passing through the x3-axis, we obtain (1.14) 

1 d 0 P 
-- p - 

Sl I PdlE r 
dr dz j-v “lpp; I) 

Applying now the HGlder inequality to the right-hand side of (1.14) we find. that 

$15) 

which integrated over t yielda (1.11). Putting p -+ w in (1.11) we obtain (1.121, while the in- 
squality (1.13) follows directly from (1.14) and (1.11). Lemma 1.2 is proved. 

L c m m a 1.3. The following estimate holds for the axisymmetric solution of the prob- 
lcm A@): 

P r o o f. Maltfpiying (1.8) by ro aud integrating, we obtain 



Axially symmetric flows of ideal nnd viscour flaidr 55 

Integretion of (1.18) with respect to t from 0 to t, with (1.5) and (1.13) taken into account, 
yields (1.16) and (1.17), which proves Lemma 1.3. 

L e m m a 1.4. The following estimate holds for the axisymmetric solution of the pro& 
lem A(B) (C is an absolute constant): ’ 

Its proof follows the lines of that of Lemma 1.3. Here (1.8) is multiplied by ro3 and we 

utilize the previous estimates together with the imbedding estimate H,fR3) fl Ht fff 3, in 

L, (R3) (see e.g T9]). 
L e m m a 1.5. For any function d(r) we have 

P r o o f, The inequality (1.21) follows from the even more obvious inequality 

il v llpp f II cE lh” II T l$IE 
by putting a,,‘= p - s and applying the Young’s inequality 

L e m m a 1.6. The estimate (1 <p): 

II D.xu ll,,ptwJ G CP I/ rot ” It+,w) (1.22) 

holds for any vector u(r) solenoidal in R3 and sufficientiy rapidly diminishing at infinity. 

Here C is a constant independent of U and p. 
P r o o f. We know [lOI that a vector u solenoidal in R3, satisfies 

II --z rot n, AD=--rotu, B a,=O 

from which (1.22) can be obtained using the estimate of the solution of the Dirichlet prob- 
lem for the Poisson’s equation, obtained in 1111. 

L e m m a 1.7. Tbe following estimates (24 p, C, and C, are absolute constants) hold 

for the axisymmetric solution of the problem A(D): 
t 
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Proof. Estimate (1.23) followa by imbedding [I21 from (1.5) and (1.191 on the basis 
of Lemma 1.6, while the estimate (1.24) follows from (1.5) and (1.23) by Lemma 1.5. 

L e m m a 1.8. The following estimates hold for the axisymmetric solution of the prob. 
lem A(B) 

t 

110 h t) ll&f(R’) \ <~,(llrata~l~~,,~+S,rotF(~,~)ll~~,,,dr+SB~(~)dr) (1-26) 
0 D 

+ II rot a lIL,(R’) +jllrotF(z.r)ll~,la~ld’+j!B’(‘)dr) (1.27) 
0 

where 24 p, while Ct and C, are absolute constants. 
The proof of (1.25) follows that of Lemma 1.3, where (1.8) is multipiied by ri #/P-t sign0 

and the estimate (1.24) is used. Estimate (1.26) follows from (1.25) in the limit as p + m 

and this completes the proof. 

2. Uniqueness theorems. L e m m a 2.1. The generalized solution of the prob- 
Iem A(R) satisfies, at any tt E [O, ?‘I, the following integral identity 

for any rb(x, t) given in the definition of the generalized solution of the robIem A(B). The 
proof follows that for the case of plane parallel flows of an ideal fIuid !a.. f 

T h e o r e m 2.1. There exist not more than one generalized solution of the problem A. 
P r o o f. Let viz, t) and vl(z, $1 be two solutions of the problem A and let U = Vi - V. 

Let us write the identity (2.1) for v and v1 and subtract them from each other, putting 4 = 
= A,2 u, the operator A, is defined by 

/l,,U = 
s Oh,, (I -y, t- r) u (Y, t) dy d% 

Qt, 
where <fibs (x - yv, t - 7) is the averaging kernel [13], Qrt = R’x[O, tt] and h, -(r 0. In the 
limit as n + 00, we obtain 

W,~,~A’idr=; ’ 
a 

(uxrotu)vdzdr (2.2) 
0 0 1 

the 
Passing to the limit is valid here, since An2 u converges to u in Le 2 (Qtt 1 (see I81 for 
definition of L,, , spaces) and VA, 2 u converts to VU in L, (Q, t ?, while A, 2~ (z, 11 

and A,U(X, t) converges to U(Z, t) in L ,(R3). 

Applying the Hliilder inequality to the ri&t-hand aide of (2.2) and taking into account the 
imbedding estimates we obtain (2 <p < 6, p-t+ q-1 = !4 and C is 811 absolute constant): 

W-6 6-P 

(2.3) 

Next we apply the Young’s inequality with the indices 
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4P 
r=53’ 

4P 
s=g--p 

to the integral expression in the right-hand side of (2.3). to obtain 

(1 tt t* 

~lu~~~+~ji~~l~,~~<c~e~jnul~,~~+c?E-”$gup.dr (2.4) 

0 0 

where the constants Ct and C, are independent of u. e and $1. Choosing now 8 such 

that C t sr < v, we obtain from (2.4) (the constant C being independent of U and t) 

‘! 

IIUl&a\< C \ ~Ul~~d7 
0 

This implies that U E 0, which proves Theorem 2. 
T h e o r e m 2.2. There exist not more than one generalized solution of the problem f3. 
P r o o f. We follow the procedure used in the proof of Theorem 2.1. Putting z(t) = IIUll 

= /u /bu fR3I ) we obtain 

lfz ’ 
Zx==-- 

a 
(u, V) vu dz (2.5) 

S 

From the definition 1.2, Lemmas 1.5 and 1.6 and the inclusion theorem LIZ] it follows 
that the vector u is bounded in Q =: \u&, $1 16 M. N ow applying to (2.5) the Elder inequa- 

lity and Lemmas 1.5 and 1.6 we obtain (C is an absolute constant) 

dZ l 

Z x<CM:. 
a 

1 u i2-” i Vv I dr < CM’ Ii Vv &,r Z*-’ < 
t 

z/r z2-c Gg CM’ + (11 rot v II2 + II rot v llM ) Z2-+ 
from which, taking into account the fact that 

Ii rot v IIs + Ii rot v II M < nil, when t E IO, 2’1 
we obtain, on integrating with respect to ‘t, 

z (t) < M (2CMAk’C (2.6) 
Putting e + 0 in (2.6) we find, that Z(t) = 0 when t E [O, 70] and ~0 = (4Ckft)‘1. Re- 

peating this procedure for the segments fTo, 27o], [27o. 3T07 etc., we can show that z(t)= 
= 0 on [O, Tl which implies that U(Z, t)s 0 in QT which proves the theorem. 

3. Existence of a solution to the problem A. Here we prove the following 
theorem: 

T h e o r e m 3.1. Let ah) E H,(R 3, and F(x, t) E H2 ‘(QTL Then an axisymmetric 

generalized solution of the problem A exists. 
Let {b(n)(x)l and fF@)(z, d] be the sequences of vectors, infinitely differentiable, ari- 

symmetric and solenoidal in R3, and finite in the semi-plane passing through the r3-axis 

which converge to a&1 and Fh, t) respectiveiy in Hx(RJ) and H,‘(Q,); let further {D@)t 
be a set of con centric spheres which, together, fill the whole R3-space and such, that the 
vectors b(o) and F(“) are equal to zero outside D(n). We shall define the vector u(“)(x, t) 

in Q*(n) = D@)x[O, 7’1 as the axisymmetric solution of the problem 

W 
ut -_ ,T~~(=’ + (#‘f, V) u(n) = - VP@’ + F’“‘, div u’“’ = 0 (3.1) 

dn) (2, 0) = b(“); U(n) .n I 08 SW = rot P Jstnj = 0 (3.2) 

where S(o) is the boundary of the sphere tin) and II denotes the unit outward vector normal 
to S(n). 
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We shall call “the generslized solution of the prqblem (3.1) and (3.2) in QT@‘) “, the 
axisymmetic vector tt(mn) Cr, t) satiafyfng the conditions of Definition 1.3 (if it ie continued 
as its null value outside D(*) ), together with the following integral identity 

- d n) 

b'"' (x) cp’“’ (z, 0) dx +i& [-I+~‘#) + vVu(")vq(") + 

+ ($‘), V) us - F’=)q/=)] dz& = 0 (3.3) 
for sny vector c$(“) G, t) emooth in QT(“) and solenoidal and axiaymmetric in D(“), for 
which I$(“) (x, 7’) = 0 and for which conditions (3.2.2) and (3.2.3) hold. 

We shall use the Galerkin method to construct a generalized solution of the problem (3.1) 
and (3.2). We shall fix the value of a and, for the time being drop the superscript in D(o), 
S(u), Q+") , b(n), PC”), u(“) and 4(o). Let now a be the region of intersection of the sphere 
I) with the semi-plane passing through the xg -axis, let 2 be the boundary of ft and let (sb, 
(r, z)] be a sequence, nonued in Lzffl), of the cigenfunctions of the problem 

- (qrr + %*) = N* cpfc = 0 (3.4) 

orthogonal and complete, as we know, in the spaces L, a2) and WSo(‘) (a), and let ok (r, Z) 
- rl$k(r, t); the sequence 10, ] in obviously orthonormel and complete in the L,, + (s1) 
space of fnncdons quadratically summeble in n with the weight r”(. 

Let us now obtain the vector ttk(%) in D as s solution of the problem 

div ttk = 0, rot W3 = ok, Wk’n 1s = 0 (ok = (0, 0, @, & O)) (3.5) 

Since div ok = 0, the problem (3.5) has a unique solution [lo]. Let afr, z) = (rot’bfe. 
Since o(r, 2) E, L f,r -4, it can be expanded into a Fourier series in o k(r, z) 

co 

6 (r, 2) = 2 %@i (r, 4 
i==l 

We sha!I take the vector 
m 

(3.6) 

as at m-th Gale&in approximation, with the following conditions 

iiF’ (0) = dck drn) (r, e, t) = (3.8) 
t=1 

impooed on the fanctfons A&) lk = 1, Z,..., m). 
L a m m a 3.1. Vectors tt@)Or, t) Gn = 1, a...) are uniquely definable by the relations 

(3.6) to (3.8), are axfsymmetrfc snd l olenoidal in D, have, together with Us second deri- 
vadves in I which are continuoas in QT, and aatiafy the conditions (3.2). 

P r o o f. We insert (3.6) into (3.7) to Bnd A,(m)(t). This yields a first order system of 
ordinary differentfal eqnadons, which hss a uniqns solution satisfying the initial conditions 
(3.8). The remaining sssertions emerge directly from the properties of the VQCtOrs uk 6d. 

L e m m a 3.2. From the sequence {cd*) 1 a sabsequenca (for which we retain the pre 
vioos notation) cat be formed, whfch weakly converges in L 1 (Q T) a2, = fh[O, T]) to a 
fnnction o Cr, s, $1 so, thet do@)/&, &&)/a I and o(@/r converge weakly in L @ 4 to 
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da12 r, dad& and cLt/r respectively. 

P r o o f, Multiplying each of Eqr. of (3.7) by the. corresponding A,(*) and sdding them 
together after the transformations analogona to those applied in Lemma 1.2, we obtain the 
following estimate uniform in m and t E [O. T] 

It remains to apply the theorems on wet& compactness of a sphere in a Hilbert space 
and on weak closure of the generalized differentiation. 

L e m m a 3.3. From the sequence [o(m)] a subsequence (for which we retain the prr 

vious notation) can be formed, which converges to w(r, r, t) weakly in L, @2) aud uniformly 
in t E.[O, T], 

P r o o f. Proceeding from the relations (3.7) we csn easily show that the following con- 

tinuous functions 

‘mm,k @I = ~~‘m)~~~ &.& 
a 

form, at auy fixed value of k and m > k, an uniformly bounded and uniformly continuous 
family. Let us now select, out of each family, a subsequence converging uniformly on [O, T]. 

Diagonalization then yields a subsequence converging uniformly for each fixed k when 
m+c=. 

Taking now into account the completeness of the system {&I in L,(a) we can easily 

show that the corresponding subsequence of sequences lo.$m)j converges weahly in L,(n) 

uniformly in t E [0, T]. 
L e m m a 3.4. From the sequence {u(~)(z, t)] a subsequence can be formed, which con- 

verges weahly in W,(lf(D) uniformly in t E[O, T] and strongly in Lp(&$ for 1 <p < 4 to 

a vector u(x, t) which is axisymmetric, solenoidal and has the vorticity given by c&z, t) = 
= (0, 0, 0). 

Its proof follows from (1.22) and the continuity of the imbedding operator. 
L e m m a 3.5. Vector u(.s, t) represents a generalized solution of the problem (3.11, 

(3.2). 
P r o o f. By Lemma 3.4 it remains to show that Ub, tf satisfies the identity (3.3). Let 

$(r, z, t) be an arbitrary function continuous in Q T together with its first derivatives snd 

equal to zero on 2 and when t - T. If now X,is the eigenvalue of the problem (3.4) corres- 

ponding to the eigenfunction 4,. than the functions $*(r, L) = (1+ &)A &(r, I) form a 

complete system orthonormal in U’,‘(t)(Q), and +(r, I, t) has the following expansion 

*(r, 2, I)=; c,(t)$&(t, 2) (3.9) 

converging in W 

uniform on [O, T ! 

(“(Q) at any t E [O, T], “I;& easily be shown that convergence will be 

am. 
and that the series for j$/jt also converges unifotmiy in t;E [0, T], in 

From this, the imbedding theorem implies the uniform on [0, T] convergence of both ser- 

ies in any L,(n) (1 < p <WI and even more, the convergence in any L,(Q +. Denoting the 

m-tb partial sum of the series (3.9) by t)(m), 

+ k,,-n ok, 

multiplying each of the Eqlk of (3.7) by (1 + 
summing over k from I to m and integrating with respect to t, we obtain 

T 
‘ a I l 

- rfJm)(r, 2, O)$ (m)(r, z, O)drdn+ H [ r --O 

Ok 

(ml 2!?!$ + (Urtml !Z!$ + 

&P 
+pp+- -u 

(J") 
imp *cm,+ v 

&p) &p' 

t r arar 
+ip!!g!- 
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9”’ + 
&t) agfm) ,Im) -- _t r3 $mt 

ar dr drdt = 0 r (3.10) 

Tahing into account the character of convergence of I&@‘), u,(“), ua@) and o@“), we 
can essily show that the limiting process as m + 00 is applicable to (3.10) (this corresponds 
to the formal deletion of the index m). Let now 4(x, t) be an arbitrary vector described in 
the definition of the generalized solution of the problem (3.1) and (3.2), tbe function $(r, 
I, t) can be obtained as a solution of the following problem: 

(3.11) 

It csn easily be shown ‘that the roblem (3.11) has a unique solution and, that this solu- 
tion $(r, z, C) is equal to zero on I! and when # = T. Putting I+$= (0, $, 0) and assuming 
that by (3.11) rot TV%= 4, we can transform the identity (3.10) into 

1 

-c b(~)~(~,O)d~+~ s~-u~~+~V~V~+~u, V)urp-Fqldxdt=O 
b 06 

which proves the Lemma. 
L c m m a 3.6. Vorticity of the generalized solution of (3.1) and (3.2) represented by 

the vector 0(x, t), has second order derivatives with respect to x and first order derivatives 
with respect to C, summablc to degree p (1 < p < 2) over the cylinder QT’ 

P r o o f. Proceeding from identity (3.3) we can easily ahow that O(X, t) coincides al- 
most everywhere in QT with o’(x, t) which is the solution of 

@t ‘- vAo’=g(z, t), 0’ 1s = 0, 0’ It, = a (4 
g z (0, V) u -(U, V) 0 + f, u (2) = 0 (f, 0) 

Lemmas 3.2 and 3.4 imply that g(x, t) E L,(Q,) for 1 <p < 2, and the proof now follows 

from the results of SoIonnikov !141. 
L e m m a 3.7. Generalized solution of the problem (3.11, (3.2) represented by the veo 

tor U(S t), has derivatives with respect to x aud t, of any order and continuous iu Q p 
The proof can be obtained by repeated application of Lemma 3.6). 
Thus we have proved the existence of the (classical) solution of the problem (3.1). (3.2) 

for any value of n. 
To complete the proof of Theorem 3.1 we shall now consider the sequence (II(“)&, t)]. 

Assuming that the sequences lb@‘)f and {Era) 1 are uniformly bounded in H,(RJ) and H,’ 
(Q.J respectively and applying Lemmas 1.1 to 1.3, we obtain the following estimate: 

II u /I(u) (51 t) II&( < c (3.12) 

nnifonn in n and t E [O, T]. 
From (3.12) it follows that from {II( a subsequence cau be formed, which converges 

weakly in Ho(R3) and HI@) uniformly in t E [0, r] to some vector V(X, t). Tehing (3.3) to 
the limit sa a+ aoS we obtain (1.3) which completes the proof. 

T h e o r e m 3.2. If ah) E H3(R3f aud Ffx, t) EZ H,‘(Q& then the arisymmetrk 
generalized solution V(X, t) of the problem A has a bounded vorticity 

max 11 rot v (5, t) IIiww (0 < t < T) 

The proof follows that of Theorem 3.1. F?e assume that {b(“) 1 and IF(“) 1 converge to P 
and Fin H3 (R3) md H3’(QT) respectively. Using Lemmas 1.1 to 1.3 and 1.8, we obtain 
the estimate 

llUf*) (x1 1) Il&[#)) G c (3.13) 

uniform inn and t E [0, 2% 
Using (3.13) together with Lemma l.S, we can form from the elements of {II(“)), for any 

p > 2, a sohasqaenca converging weakly in Ho(R3) and H 1(R3) uniformly in t E [0, T]. Vor 
tiddaa of the elements of this subsequence converge weahly in L,(Rs) nnifortuly in t E[O, 
2’1. Applying now tlte theorem on weah closure of generalized differentiation, we obtain tbe 
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estimate \lrot V(x, t)/jLpcR3, 4 C uniform in p >,2 and t E 10, T], from which the proof fol- 

lows. 

4. Existence of a generalized solution to the problem B. 
T h e o r e m 4.1. Let P(X) E H, (R3) and Fk, t) EN, ‘(QT). Then an axisymmetrfc 

solution to the problem B exists. 
P r o o f. Let {V(R) ] be a sequence of positive numbers converging to zero and let V(“) 

(r, t) be the axisymmetric generalized solution of the problem A, where the value of viecos- 
ity is given by v = v(n). Taking into account the fact that the estimates given in Section 1 
are independent of viscosity V, and Theorem 3.2, we obtain the following estimates uniform 
inn and t E [O, 2’1: 

from which it follows, that a subsequence can be formed from ~~“)(x, t)j converging weakly 
iu Ho (R3) and Ht (R 3) uniformly in t E [O, T] to some vector V(r, t), whose vorticity has 

an upper bound maxI rot V(z, t)II(MRs), (04 t \( T). 

On passing to the limit as n + 00, the identity 

T 

’ - 

a s 
a (2) cF (I, 0) dX + j i I-- V@d& + (Vfn), V) Vw# - FWl dx dt + 

o R’ 
T 

rot vfn) rot qr dx dt = 0 

yields the relation (1.4), which proves the Theorem. 
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ON THE KINE~'ATI~S, NONE~UILIBRIU~ THER~OD~AMICS, AND 

RHEOLOCICAL RELATIONSHIPS IN THE NONLINEAR 
THEORY OF VISCOELASTICITY 
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Within the scope of the customary thermodynamics of irreversible processes (TIP) (a linear 
connection between thermodynamic fluxes and forces, s~rnet~ of the kinetic coefficients), 
and utilizing the relationship derived herein between reversible, irreversible, and total 
strain rates, a system of governing equations is constructed for the simplest viscoelastic 
media in the presence of arbitrary finite reversible deformations. 

These equations are investigated in the case of sufficiently small reversible deformations; 
a “second-order” theory is constructed taking into account the physical RS well as the geo- 
metrical, nonlinearity in the system. It is hence taken into account that the kinetic coeffi- 
cients will be tensor functions of the tensor of reversible deformations. This latter Ieads to 
“deformation anisotropy” of the heat conduction and diffusion. Expressions are written down 

for entropy production in the system for the simplest model media, 
The “second-order” theory is extended to the case of isothermal deformation of visco- 

elastic media with many relaxation times. The solution of a number of problems for the sim- 
plest flows (simple shear, tension) of viscoelastic media showed a good enough qualitative 
agreement between the constructed theory and experiment. Also questions about tbe inver 
aion of the Jaumann tensor derivative (‘(‘Jaumann integration? are considered. 

A large quantity of papers (see the survey [l]) is devoted to a theoretical description of 
viscoelastic media. In the pheaomenological construction of a tbeory of viscoelasticity, as 
in the construction of continuum models generally [2 and 31, invariance considerations, the 
geometry of finite deformations, and thermodynamics are utilized, while tbe thermodynamics 
of irreversible processes (TIP) is used for dissipative media. Biot [4 and S] made a suffi- 
ciently complete investigation of linear viscoelaaticity under conditions of small velocities 
of this kind, 

Let us refer to the work of Kluitenberg iu which the thermodynamic derivation of govern- 
ing equations for various media is expounded [S to Q]. 

Among the earliest investigations on the nonlinear theory of viscoelasticity is the paper 
[lo]; however, the kinematics of viacoelastic phenomena remained unclarified in this work, 
and there is a total absence of a thermodynamic analysis of the phenomena. 

The development of a theo 
Y 

of nonlinear behavior of dissipative media is often connec- 
ted with the extension of TIP 111. in opposition to such a viewpoint, an attempt is made 
herein to utilize the customary version of TIP with linear phenomenological laws and Onsa- 
ger reciprocity relationsbipa, to derive the govemiag equations of n nonlinear viacoelaatic 
medium with physical and geometric nonlinearitiea. 

We shall often rely on [2 and 121 without detailed referral in expounding the theory of de- 


