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We show that the Cauchy problem for the Navier-Stokes and Euler’s equations has, on the
whole, a unique solution in the case of axisymmetric flows of an incompressible fluid. We
also show that, when viscosity disappears, then the solutions of Navier-Stokes equations
tend to the solutions of Euler's equations. In the general three-dimensional case, the un-
ique solvability has only been proved for some isolated cases (for the viscous flows in [1
and 2] and for the nonviscous flows in [3 and 4]). Complete solutions exist however in the
plane case for both problems ([5 and 6] for viscous and [7 and 8) for nonviscous flows).

1. Statement of the problem and a priori estimates. Let us consider
the Cauchy problem for the Navier-Stokes equations (problem A) and for the Euler’s equat-
ions {(problem B) in the case of an incompressible fluid filling the whole space R 3
av

—a-t-——vAv—}-(v,V)\':—VP—}—F(::J), divv=0, v(z,0)=a(x) (1.1)

Y v, V)V=—VP+F(z,1), divv=0, v(z,0)=a(@) (1.2)

where V= V(x, t) and P = P (x, t) are the velocity and pressure respectively, x = (x;, x,,
x,) denotes a point belonging to R3; ¢ &= [0, TT (where 0< T is any number); F(x, t) and
a{x) are known vectors solenoidal in R3 and v is a positive constant.

We shall call the vector V= (v, vg, v,) axisymmetric if vg= 0 with v, and v, are inde-
pendent of & and we shall call a function axisymmetric, if it is independent of 8 (r, O and
z are cylindrical coordinates).

We shall now introduce the following functional spaces:

Ho(R3) and Hy(R3) are the complements of the set of all vectors, smooth, finite and
solenoidal in R3 over the noms of the following scalar products:

(w3, ug)y = §

3

wudz, (uy, Up), = § rot u; rot usdz

Ho1Q ) and H,’(Q7) are the complements of the set of all vectors smooth in Q. =
= R3x10, T, finite and solenoidal in R 3 over the nom of the following scalar prod-

ucts:
T T
(Us, u) g, = § (g, w)y Aty (), = Uy, o)
0 0

Ha(R®) and H3(R®) are the complements of the set of all vectors smooth and axisym-
metric in R3 and finite in the semi-plane passing through the x4-axis, over the follow-
ing norms:
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H,’(Qy) and H3"(Q) are the complements of the set of all vectors smooth in O r
axisymmetric and solenoidal in R3 and finite on the semi-plane passing through the
x4 ~axis, over the noms

T T
Ju = §u ulydt,  fufy.= gziu by dt

Definition 1.1. The vector V{x, t} € H,’(Qr) shall be called the generalized
solution of the problem (1.1) in the cylinder Q... This vector will have finite

max |V (2, ?) |g,as max | v (z, t)||Lp(R,) (T

for some p {3 < p £ 6) and will satisfy the following integral identity (Vo= (Vd,, Vo,
V)

T
——§ a(2) @, O)dx+5§[~— v+ vWVVQ + (v, V) ve— Feldzdt =0 (1.3)
3 0 L]

for any vector ¢p{x, t) smooth in Qr., finite and solenoidal in R3, for which ¢(x, T) = 0.

Definition 1.2. The vectervix, t) & H,”(Qy) shall be called the generalized
solution of the problem (1.2) in the cylinder Q. This vector will have finite

max|v(z, Olygpy  WEX]POLV(Z, Olymy  (O<EST)
and will satisfy the following integral identity

—§ a@ @z, 0)dz +{ §{ [—ve,+ (v. V)vo—Foldzdt=0 (.0
s o R?

for any vector ¢ (x, t) smooth in Q y and finite and solenoidal in R®, for which ¢lx, T) = 0.

Vectors a(x) and F{x, ¢) are assumed such, that the corresponding integrals in (1.3} and
(1.4) have a meaning, e.g. they can be generalized vector functions concentrated on some
surfaces or curves.

As usual, we verify that the classical solutions of (1.1) and (1.2) are generalized solu-
tions in the sense of the above definitions and conversely, that the generalized solutions
with all continuous derivatives appearing in {1.1) and (1.2) are classical solutions of these
problems,

We shall now give a priori estimates for solutions of the problems A and B, which are
supposed to be smooth, axisymmetric and decaying sufficiently rapidly at infinity, As we
know, the energy equation yields (axial symmetry need not be assumed here).

Lemma 1.1. The following estimate holds for solutions of the problems A and B

H

1V @ ) Iy <12l =+ SIF @ ) ey A7 (L.5)

o
Vorticity equations of the problems A and B
o, —vAo + (v, V)o — (0, V)v =1{ (1.6)

o+ (v, V)e— (o, V)v=1 (0 =rotv, f=rotF) .

will yield further estimates.
In the axisymmetric case, (1.6} and (1.7) can be written as

o 3’0 I*w 1 da ] ow dw v,
(Gt t e —w) tug tug —Fe=f 09
o [0 dw v,

_at__l,_.vraT._*_vzéT...._r—m:f (1.9)
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and by virtue of axial symmetry we have
(D,-=(l)zzo, ms:m(r9zit); fr=fz=0, fuz/(r,z,t)
Continuity equation in this case has the form

av, v,
ar +6z ro (1'10)

Lemma 1.2, The following estimates hold for the axisymmetric solution of the prob-
lem A(B) (1< p):

¢
o (x, t) rota tF (z, t
| === e
L, (R‘) L (R') v E, (R')
t
ozt tF(z,
jmep cfme WIen) a
M(R?%) M(RY) 0 M(R%)
i
o (P2 rota rotF(a: )
WO |2) dear< gy n “ |
L;Ss( r 4= L(R')+4(P—” L (R?)
rot a ot F (x, -1
(e {Een] e
Lo(RY) o L (R
Pro o f. Multiplying (1.8) by
@1, ®
= sign —
and integrating over the semi-plane £ passing through the x5 -axis, we obtain (1.14)
1 d o |p ‘ 4 1 ® |2 P\2 p-1
;Wgr - drdz v (p )ir(v - ')drdz=S;f -?- sign—?-drdz
E
Applying now the Hélder inequality to the right-hand side of (1.14) we find, that
d I
1.5 p-1
Zg‘ T Zp ST Lo(E) ™, Z, dr dz (1.15)

which integrated over ¢t yields (1.11). Putting p - o0 in (1.11) we obtain (1.12), while the in-
aquality (1.13) follows directly from (1.14) and (1.11). Lemma 1.2 is proved.
L emma 1.3. The following estimate holds for the axisymmetric solution of the prob~

lem A(B):
1

ﬁﬁ) (3, t) ﬁ{a(gt) < “ rot a“.l,,(R‘) + S“ rot F (.’E, t) HL,(R’) dv +

t
B(t)= (“ al gyt 05“ F (@ Ol dr) (“ m: - M(R') n = F = an’)dr)

(1.47)

B(v)dx (1.16)

OO oy

Proo f. Multiplying (1.8) by rco and integrating, we obtain
{1 d * o \3
Tﬁi'm’d' dz + ‘é’ {(Vm)z + (T) ]dr dz =S vt dr dz -+ Erfmdr dz
> &

i d » 3 @ Y, y
vl dtérm’drdz<§—rv,wdrdz+i(r ) (r @) drdz
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Integration of (1.18) with respect to ¢ from O to ¢, with (1.5) and (1.13) taken into account,
yields (1.16) and {1.17), which proves Lemma 1.3.

Lemma l.4. The following estimate holds for the axisymmetric solution of the prob~
lem A{B) (C is = absolute constant):’

L " Y 2 B peo h
} re drdz +(§r/ drdz) ](érm drdz) (1.18)

J@ (@, )y g < ITObal, g + \n rot F (z, 1) |, gs 7 + Sgl(r) dv (1.19)

rot F (z, 7) dt)[(na bemsy + 3” F @ ey dt) *

rot a
r

Bl(t)xC(

r uM(R-‘)
t t o

< (Irobal g+ 1oL F 22 Dy dv -+ Q Bmar) | (1.20)

MRn S
{1

Tts proof follows the lines of that of Lemma 1.3. Here (1.8) is multiplied by re? and we
utilize the previous estimates together with the imbedding estimate H SR N H R 3 in
L, (R3) (see e.g. [9]).

Lemma 1.5 For any funcnon & (x) we have

lol, (R’) “‘P”L Ry T ”‘P”M(m Esssp<Lo) (1.21)
Pro o f. The inequality (1.21) follows from the even more obvious inequality

e I, <@l 9lp2a
by putting @, ’=p — s and applying the Young's inequality

aP bp" ) p
abg’;}‘—f‘—;‘ (a,b}ﬂ,p>1,p:}-:-i)
Lemma 1.6. The estimate (1 <p):
“ DYu “1 ([{’l) ( p HIOt u “L (R") (1.22)

holds for any vector u(x) solenoidal in R3 and sufficiently rapidly diminishing at infinity.
Here C is a constant independent of 4 and p.
Proof. Weknow[10] that a vector ut solenoidal in R3, satisfies

u-=rot B, AB = —rot u, B =0
from which (1.22) can be obtained using the estimate of the solution of the Dirichlet prob~
lem for the Poisson’s equation, obtained in [l
Lemma 1.7. The following estimates (2K p, C, and C, are absolute constants) hold

for the axisymmetric solution of the problem A(B):
t

“V (I, t) “M(H’) < Cl (“ a“L,(Ra) + S“F (x’ T)“L,(R’) dT + “ rOt‘a“L‘(R!) +
H i
+§Irot F (2, 0], p dv + { Bu () dr) (1.23)
Iv (=, 2) ﬂx,pum <G (" Ay + §’f F (2, D)y dv + rotafy ) +

t t

+ STt F (2, 1)l s, 4% + { By (1) de) (1.24)
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Proof. Estimate (1.23) follows by imbedding [12] from (1.5) and (1.19) on the basis
of Lemma 1.6, while the estimate {1.24) follows from (1.5) and (1.23) by Lemma 1.5.

Lemma 1.B. The following estimates hold for the axisymmetric solution of the prob-
lem A(B)

t
o @Dl 5y < Co (1rot al, g+ \Jrot F (z, 7) e 4 + \Ba(v) dr)  (1.25)

+

t

0
t
10 (2, )y < Ca (170t @y, + § 1T F (2, )y + \Ba(ryas)  (1.26)
0
b4

0

mta[
ro|

By(t)=( + i“ oL F (z, )|

M(RY) MRS

%) (laly oy, + UF @ D)y de +

H i
+[rotal, g +g|| 1ot F (2, 7) |, sy 4% + \ B (1) d7) 1.27)
0

0
where 2. p, while C, and C, are absolute constants.
The proof of (1.25) follows that of Lemma 1.3, where (1.8) is multiplied by r{w [P~ signw
and the estimate {1.24) is used, Estimate {1.26) follows from (1.25) in the limit as p > o
and this completes the proof.

%2. Uniqueness theorems., L emm a 2.1. The generalized solution of the prob-
lem A(B) satisfies, at any t; & [0, T], the following integral identity
t
(v o tyde— \a@ e 0)dz+ { {(—vo, +vIvip +
R? R’ 0 Rt
+ (v, V)ve — Feldzdt =0 2.1
for any & (x, ¢) given in the definition of the generalized solution of the p‘roblem A(B). The
proof follows that for the case of plane parallel flows of an ideal fluid fal.
Theorem 2.1. There exist not more than one generalized solution of the problem A.
Proof. Let viz, t) and V,(z, ¢} be two solutions of the problem A and letu=v, — V.
Let us write the identity (2.1) for v and ¥, and subtract them from each other, putting ¢ =
= A,%u, the operator 4,, is defined by
A = S @p, (x—y, t—T)U (Y, T) dydT
qQy,
where wp, {x -y, t — T) is the averaging kemel {13, Q,1 = R3x{o, zI] and 4, - 0, in the

limit as n - o0, we obtain
tl tl

1 : .y
> Iz, ) ey + ¥ S Iz, ©) [F, g dv = ) ; (uxrot u) vdz dr (2.2)
0 o ke
Passing to the limit is valid here, since 4, u converges to U in L (Q,.) (see (8] for

the definition of L , , spaces) and VA,?u converges to Vu in L, (Q,l ), while 4, %ulx, o
and 4, u(x, ¢) converges to ulx, t) in L ,(R3).

Applying the Hélder inequality to the right<hand side of (2.2) and taking into account the
imbedding estimates we obtain {2<p <6, p=! + ¢g*! = % and C is an absolute constant):

1 v -
- 2 9 2p
zuung,+v§uurr§,ldr<coggrnvnq§nuugs’ Jul? v 23)

Next we apply the Young’s inequality with the indices



Axially symmetric flows of ideal and viscous fluids 57

_ 4p 4p
=5p—6"' $=f—p

to the integral expression in the right-hand side of {2.3), to obtain
f( t: tl

1 \ - .
—luly,+ ‘VS Iy, de < cmrS Jullyde+Coe™ | fully, o (2.4)
4] o (4]

where the constants C, and C, are independent of 4, & and¢;. Choosingnow & such
that C, € <v, we obtain from {(2.4) (the constant C being independent of U and ¢)
t

pugy, < ¢\ futly e
]

This implies that u= 0, which proves Theorem 2.
Theorem 2.2. There exist not more than one generalized solution of the problem B.

Proof We follow the procedure used in the proof of Theorem 2.1.. Putting Z(¢) = [uf
= }{IIHHO (R3y: We obtain

Z = — é (u, V) v dz (2.5)

From the definition 1.2, Lemmas 1.5 and 1.6 and the inclusion theorem 119] it follows
that the vector u is bounded in Q r: |ulx, #) | M. Now applying to (2.5) the H5lder inequa-
lity and Lemmas 1.5 and 1.6 we obtain (C is an absolute constant)

z % <CM:§ [uP® | Vv |dz < CME | Vv, 2 <

2 2
SCME lirot v, Z27* T CM® - (|rot vip + | rot v [,) 22°¢

from which, taking into account the fact that

Il rot vil -+ ([ rot vil 3y < M, whent € [0, T]
we obtain, on integrating with respect to t,

Z (1) < M ECM)Y* (2.8)
Putting & - 0 in (2.6) we find, that Z(¢) = 0 when ¢t € [0, 7,] and 7, = (4CM Y1, Re-

peating this procedure for the segments rTO , 27‘0], r27‘0, 37’0‘, etc., we can show that z{t) =

= 0 on [0, T] which implies that u(x, t}= 0 in Qr which proves the theorem.

3. Existence of a solution to the problem A, Here we prove the following
theorem:

Theorem 3.1, Letalx) & H,(R% and Flx, t) & H, “(Q). Then an axisymmetric
generalized solution of the problem A exists.

Let {b(m (x)} and {F() (x, ¢)] be the sequences of vectors, infinitely differentiable, axi-
symmetric and solenoidal in B3, and finite in the semi-plane passing through the x ;-axis
which converge to &{x) and F(x, t) respectively in H,(R3) and H,°(Qy); let further {D(™}
be a set of con centric spheres which, together, fill the whole R 3-space and such, that the
vectors b(") and F(®) are equal to zero outside X?), We shall define the vector u(™(x, ¢)
in Q0 = DM x[0, T] as the axisymmetric solution of the problem

uf” — vpu™ + @™, V)u = — g P L F™, divu™ =0 (3.1)

u™(z, ) =b™;  u™.n| 0, rotu™| =0 (3.2

st = 5(n)

where S is the boundary of the sphere X"} and N denotes the unit outward vector normal
to S{n),
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We shall call “the generalized solution of the prqblem (3.1) and (3.2) in Qr™ ", the
axisymmetric vector U(®) (x, ¢) satisfying the conditions of Definition 1.1 (if it is continued
as its null value outside D(™) ), together with the following integral identity

T
—D§ b (2) ™ (2,0)dz +{ § [—ugl” + vWu Vg™ 4
n) ¢ p(n)
+ @™, V)ue™ — FMe™}dzdt = 0 (3.3)

for any vector ¢ (x, t) smooth in Q™ and solenoidal and axisymmetric in D™, for
which ¢ (x, T)= 0 and for which conditions {3.2.2) and (3.2.3) hold.

We shall use the Galerkin method to construct a generalized solution of the problem (3.1)
and (3.2). We shall fix the value of n and, for the time being drop the superscript in D),
S®), @4n), bn), F(m), u®) and ¢ (™). Let now (I be the region of intersection of the sphere
D with the semi-plane passing through the x,-axis, let T be the boundary of () and let {,
{r, 2)} be a sequence, normed in L,(Q), of the eigenfunctions of the problem

— (@rr + cpzz) = MP’ ¢/s = 0 (34)

orthogonal and complete, as we know, in the spaces L, ({}) and W2°“) ), and let w (r, 2)
=r2¢,(r, 2); the sequence {w, } is obviously orthonormal and complete in the L, .4 (D)
space of functions quedratically summable in ) with the weight r-4,
Let us now obtain the vector U, (x) in D as a solution of the problem
dive, =0, rotuy=0,, u-nls=0 (@x= (0, oy (r, 2), 0)) (3.5)
Since div wg = 0, the problem (3.5) has a unique solution [10]. Let a(r, 2) = (roth)g.
Since o(r, 2) €. L 2, .4, it can be expanded into a Fourier series in @ lr, 2)

o0
6 (r, 2) =) oy (r, 2)
=1

We shall take the vector

m
u™ (2,1 =3 A (t)w (2) (3.6)
{uul
as sn m-th Galerkin approximation, with the following conditions (3.7
o™ (m) 3™ (m) 9™ o™y O o™ g ;0
S}"{(“a‘:“‘*’ uf™ G+ u™ G 2) S b v [T () +

o™ g [0, 1 0™ 0, @™ 9 j0, o™ o, "
A (Rt 3 DI E..A N SN a3 N D et —
dz 0z (r') r r r® 'y Or (,.s) /) ,.,] fr,}drdz—{)

AVO=a (o™ (e t) =2 AN o (r, ), (3.8)
fml

imposed on the functions A, (2) (k = 1, 2,00, m)s
Lemma 3.1. Vectors u(™)(x, 1) im = 1, 2,...) are uniquely definable by the relations

(3.6) to (3.8), are axisymmetric and solenoidal in D, have, together with u,(™) second deri~
vatives in x which are continuous in Q, and satisfy the conditions (3.2),

Proof. We insert (3.6) into (3.7) to find A, (™) (¢). This yields a first order system of
ordinary differential equations, which has a unique solution satisfying the initial conditions
(3.8). The remaining assertions emerge directly from the properties of the vectors u, (x).

Lemma 3.2. From the sequence { w(™}} a subsequence (for which we retain the pre-
vious notation) can be formed, which weakly converges in L 5 (2 5) Q2 = Qx[0, D to a
function  (r, 3, 1) so, that de(®)/3r, dw(m)/3 s and w(™)/r converge weakly in L ,((} 1) to
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dew/Ar, dew/3z and w/r respectively.

Proof. Multiplying each of Eqs. of (3.7) by the. corresponding 4,(™) and adding them
together after the transformations analogous to those applied in Lemma 1.2, we oLtain the
following estimate uniform inm andt & {o, T

i
vT 7 aat™ \3 [ o™ \3 [ gim\2
55[( = ) +( - ) +( - ) drdsdr < C
on )
It remains to apply the theorems on weak compactness of a sphere in a Hilbert space

and on weak closure of the generalized differentiation,

Lemma 3.3. From the sequence { @)} a subsequence (for which we retain the pre-
vious notation) can be formed, which converges to w(r, z, t) weakly in L, (1) and uniformly
in t &[0, T},

Proof. Proceeding from the relations (3.7) we can easily show that the following con-
tinuous functions

Imx () = [@™qir dra;
2

form, at any fixed value of k and m 2 &, an uniformly bounded and uniformly continuous
family. Let us now select, out of each family, a subsequence converging uniformly on fo, T1.

Diagonalization then yields a subsequence converging uniformly for each fixed k& when
m -» 00,

Taking now into account the completeness of the system { ¢, } in L , () we can easily
skiow that the corresponding subsequence of sequences {cf™’} converges weakly in L,»
uniformly in ¢ & [0, T].

Lemma 3.4. From the sequence fu(™Xx, ¢)} a subsequence can be formed, which con=
verges weakly in W,(1 (D) uniformly in ¢ € [0, T] and strongly in L, ((24) for 1<p <41to
a vector u(x, t) which is axisymmetric, solencidal and has the vorticity given by wlx, ¢} =
= (0, @, 0)-

Its proof follows from (1,22) and the continuity of the imbedding operator.

Lemma 3.5 Vectoru(x, t) represents a generalized solution of the problem (3.1),
(3.2}

Proof. By Lemma 3.4 it remains to show that u{x, ¢) satisfies the identity (3.3). Let
Yr{r, z, t) be an arbitrary function continuons in {} ;. together with its first derivatives and
equal to zero on 3, and when ¢ = T. If now A is the eigenvalue of the problem (3.4) corres-
ponding to the eigenfunction b, then the functions Y, (r, 2) = (1 + A ) b, (r, 3) form a
complete system orthonormal in W,X1 (), and ¢/ (s, z, ¢) has the following expansion

o
P(r 2 =2 (¥ (" 2) (3.9)
he=
converging ini W,(1 (Q) at any ¢ € [0, T]. It can easily be shown that convergence will be
uni(fo)nn on [0, Ti and that the series for j /)t also converges uniformly in ¢, € [0, 7], in
W, (.
2

From this, the imbedding theorem implies the uniform on [o, 71 convergence of both ser-
ies in any L ,(Q2) (1 <p <o) and even more, the convergence in any L ,(Q ;). Denoting the
me=th partial sum of the series (3.9) by Y(m), multiplying each of the Eqs, of (3.7) by (1 +
+ M) ¢, , summing over k from 1 to m and integrating with respect to ¢, we obtain

T
> . {m}
— §l rel™ (r, z, 0) "™ (r, z, 0)dr dz+3§ r [.., o™ a‘pat + (u,‘m)
0

™ o™ oM  ap'm ™ aypim
_ur(m) - ‘p(m) + v ¥ o —_

Set™ +
or

{"z(m)

8z ar ar az oz
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{ da™ o™ a‘p(m) oM
T o ‘p(m)+ r ar + r2
Taking into account the character of convergence of SN u,(”‘), 5™} and ™), we
can easily show that the limiting process as m » o is applicable to (3.10) (this corresponds
to the formal deletion of the index m). Let now ¢ (x, t) be an arbitrary vector described in
the definition of the generalized solution of the problem (3.1) and (3.2), the function ¥ (r,
z, t) can be obtained as a solution of the following problem:

ﬁb‘"") - m,(m):l drdsdt=0  (3.10)

1209 _o —Foe  00.0=0 (3.41)

It can easily be shown 'that the problem (3.11) has a unique solution and, that this solu-
tion ¢ (r, z, t) is equal to zero on X and when ¢t = T. Putting = (0, ¢/, 0) and assuming
that by (3.11) rot ¢y = ¢, we can transform the identity (3.10) into

T

- \ b{z)g(z, 0)dz +§ S[—utpt—}«vVu Ve + (u, Viug — Foldrdt==0
D oD
which proves the Lemma.

Lemma 3.6. Vorticity of the generalized solution of (3.1) and (3.2) represented by
the vector @ (x, t), has second order derivatives with respect to x and first order derivatives
with respect to ¢, summable to degree p (1 <p < 2) over the cylinder @r.

Proof Proceeding from identity (3.3) we can easily show that w(x, ¢) coincides al-
most everywhere in (5 with w’{x, &) which is the solution of

o — vAe =g (2 t), @ lg=0, 0 |y =6 (%)
g= V)iu—{u, VYo+/, ¢(z)=w(z 0)

Lemmas 3.2 and 3.4 imply that g{x, ¢) & Lp(OT) for 1 <p < 2, and the proof now follows
from the results of Solonnikov 14,

Lemma 3.7. Generalized solution of the problem (3.1), (3.2) represented by the vec-
tor u{x, t), has derivatives with respect to x and ¢, of any order and continuous in Q0

The proof can be obtained by repeated application of Lemma 3.6).

Thus we have proved the existence of the (classical) solution of the problem (3.1), (3.2)
for any value of n.

To complete the proof of Theorem 3.1 we shall now consider the sequence {u(™ (x, 2)i.

Assuming that the sequences {bt")} and {K™) | are uniformly bounded in H,(R3) and H,”
(@) rempectively and applying Lemmas 1.1 to 1.3, we obtain the following estimate:

ful™ (z, ) lg ™ < C (3.12)
uniform in # and ¢ € [0, 7).

From (3.12) it follows that from {u(™} a subsequence can be formed, which converges
weakly in Ho(Ra) and H‘(Ra) uniformly in ¢t € [0, T} to some vector V{x, ¢). Taking (3.3) to
the limit as n- oo, we obtain (1.3) which completes the proof.

Theorem 3.2. Ifalyx) = H;(R?) emd Flx, t) = H,;’(Qr), then the axisymmetric
generalized solution V(x, t) of the problem A has a bounded vorticity

max |{rot v (z, 8) ||mry o<t

The proof follows that of Theorem 3.1. We assume that (b} and {F(™} converge to a
and Fin Hy(R3) and H;’(Qy) respectively. Using Lemmas 1.1 to 1.3 and 1.8, we obtain
the estimate

i u™ (z, 1) Bx,{D(“)) <C 3.143)

uniform in » snd ¢ & [0, 71,

Using (3.13) together with Lemma 1.5, we can form from the elements of {utn), for any
p > 2, a subsequence converging weakly in Hy(R3) and H (R?) uniformly in ¢ € [o, T1. Vor
ticities of the elements of this subsequence converge weakly in L ,(R3) uniformly in ¢ e[o,
T). Applying now the theorem on weak closure of generalized differentiation, we obtain the



Axially symmetric flows of ideal and viscous fluids 61

estimate ||rot V(x, O, (r3s,< C wiform inp >2 and ¢ € [0, 7}, from which the proof fol-
P

lows.

4. Existence of a generalized solution to the problem B.

Theorem 4.1. Let alx) EH,(R3) and F(x, 1)  H; “(Q). Then an axisymmetric
solution to the problem B exists.

Proof Let{vt™}] be asequence of positive numbers converging to zero and let ¥v(")
(x, t) be the axisymmetric generalized solution of the problem A, where the value of viscos-
ity is given by v = v("), Taking into account the fact that the estimates given in Section 1
are independent of viscosity v, and Theorem 3.2, we obtain the following estimates uniform
inn and t € [0, T}

V™ @ Ol <€ IV @ Olgry <O 1ot v @ Dlyey < C

from which it follows, that a subsequence can be formed from {¥V(") (%, ¢)} converging weakly
in Hg (R®) and Hy (R3) uniformly in ¢t € [0, T] to some vector ¥(x, t), whose vorticity has
an upper bound max|| rot ¥{x, t)“(Mgs) , (0Lt LT
On passing to the limit as n » o0, the identity
T

- } a(@ e 0ds+\ | [ vV, + &, v) v —Foydzar +
] [ R'
T

+ vim \ rot v™ rot pdz dt =0
o K
yields the relation (1.4), which proves the Theorem.
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Within the scope of the customary thermodynamics of irreversible processes (TIP) (a linear
connection between themodynamic fluxes and forces, symmetry of the kinetic coefficients),
and utilizing the relationship derived herein between reversible, irreversible, and total
strain rates, a system of governing equations is constructed for the simplest viscoelastic
media in the presence of arbitrary finite reversible deformations.

These equations are investigated in the case of sufficiently small reversible deformations;
a ‘‘secondsorder’’ theory is constructed taking into account the physical as well as the geo-
metrical, nonlinearity in the system. It is hence taken into account that the kinetic coeffi-
cients will be tensor functions of the tensor of reversible deformations. This latter leads to
**deformation anisotropy’’ of the heat conduction and diffusion. Expressions are written down
for entropy production in the system for the simplest model media.

The *‘second-order’’ theory is extended to the case of isothermal deformation of visco-
elastic media with many relaxation times. The solution of a number of problems for the sim-
plest flows (simple shear, tension) of viscoelastic media showed a good enough qualitative
agreement between the constructed theory and experiment. Alsc questions about the inver-
sion of the Jaumann tensor derivative {(**Jaumann integration’’) are considered.

A large quantity of papers (see the survey [1]) is devoted to a theoretical description of
viscoelastic media. In the phenomenological construction of a theory of viscoelasticity, as
in the construction of continuum models generally [2 and 3], invariance considerations, the
geometry of finite deformations, and thermodynamics are utilized, while the thermodynamics
of irreversible processes (TIP) is used for dissipative media. Biot [4 and 5] made a suffi-
ciently complete investigation of linear viscoelasticity under conditions of small velocities
of this kind.

Let us refer to the work of Kluitenberg in which the thermodynamic derivation of govern-
ing equations for various media is expounded [6 to 9].

Among the earliest investigations on the nonlinear theory of viscoelasticity is the paper
[10]; however, the kinematics of viscoelastic phenomena remained unclarified in this work,
and there is a total absence of a thermodynamic analysis of the phenomena.

The development of a theory of nonlinear behavior of dissipative media is often connec-
ted with the extension of TIP?,II}. In opposition to such a viewpoint, an attempt is made
herein to utilize the customary version of TIP with linear phenomenological laws and Onsa-
ger reciprocity relationships, to derive the governing equations of a nonlinear viscoelastic
medium with physical and geometric nonlinearities.

We shall often rely on [2 and 12] without detailed referral in expounding the theory of de-



